ENTROPÍA

Ir a descargar


Ley de la termodinámica, que nos define a la entropía




La Primera Ley

Se refiere al concepto de energía interna, trabajo y calor


Si sobre un sistema con una determinada energía interna, se realiza un trabajo mediante un proceso, la energía interna del sistema variará. A la diferencia de la energía interna del sistema y a la cantidad de trabajo le denominamos calor. El calor es la energía transferida al sistema por medios no mecánicos. Pensemos que nuestro sistema es un recipiente metálico con agua.

Cabe aclarar que la energía interna de un sistema, el trabajo y el calor no son más que diferentes manifestaciones de energía. Es por eso que la energía no se crea ni se destruye, sino que, durante un proceso solamente se transforma en sus diversas manifestaciones.

La Segunda Ley


En términos más o menos sencillos diría lo siguiente: "No existe un proceso cuyo único resultado sea la absorción de calor de una fuente y la conversión íntegra de este calor en trabajo". Este principio (Principio de Kelvin-Planck) nació del estudio del rendimiento de máquinas y mejoramiento tecnológico de las mismas. Si este principio no fuera cierto, se podría hacer funcionar una central térmica tomando el calor del medio ambiente; aparentemente no habría ninguna contradicción, pues el medio ambiente contiene una cierta cantidad de energía interna, pero debemos señalar dos cosas: primero, la segunda ley de la termodinámica no es una consecuencia de la primera, sino una ley independiente; segundo, la segunda ley nos habla de las restricciones que existen al utilizar la energía en diferentes procesos, en nuestro caso, en una central térmica. No existe una máquina que utilice energía interna de una sola fuente de calor.


La entropía, el desorden y el grado de organización

Vamos a imaginar que tenemos una caja con tres divisiones; dentro de la caja y en cada división se encuentran tres tipos diferentes de canicas: azules, amarillas y rojas, respectivamente. Las divisiones son movibles así que me decido a quitar la primera de ellas, la que separa a las canicas azules de las amarillas. Lo que estoy haciendo dentro del punto de vista de la entropía es quitar un grado o índice de restricción a mi sistema; antes de que yo quitara la primera división, las canicas se encontraban separadas y ordenadas en colores: en la primera división las azules, en la segunda las amarillas y en la tercera las rojas, estaban restringidas a un cierto orden.

Al quitar la segunda división, estoy quitando también otro grado de restricción. Las canicas se han mezclados unas con otras de tal manera que ahora no las puedo tener ordenas pues las barreras que les restringían han sido quitadas.

La entropía de este sistema ha aumentado al ir quitando las restricciones pues inicialmente había un orden establecido y al final del proceso (el proceso es en este caso el quitar las divisiones de la caja) no existe orden alguno dentro de la caja.

La entropía es en este caso una medida del orden (o desorden) de un sistema o de la falta de grados de restricción; la manera de utilizarla es medirla en nuestro sistema inicial, es decir, antes de remover alguna restricción, y volverla a medir al final del proceso que sufrió el sistema.
Es importante señalar que la entropía no está definida como una cantidad absoluta S (símbolo de la entropía), sino lo que se puede medir es la diferencia entre la entropía inicial de un sistema Si y la entropía final del mismo Sf. No tiene sentido hablar de entropía sino en términos de un cambio en las condiciones de un sistema.

Entropia, procesos reversibles y procesos irreversibles



Llamamos proceso reversible al que se puede invertir y dejar a nuestro sistema en las mismas condiciones iniciales. 

El pro del que hablamos es un proceso no reversible, en donde una vez terminado, el orden que había en las condiciones iniciales del sistema ya nunca volverá a establecerse. El estudio de este tipo de procesos es importante porque en la naturaleza todos los procesos son irreversibles.

La entropía y la energía gastada

En el principio enunciado por Clausius, podemos encontrar la relación con la entropía y la energía liberada en un proceso. Pensemos en un motor. El motor necesita de una fuente de energía para poder convertirla en trabajo. Si pensamos en un coche, la gasolina, junto con el sistema de chispa del motor, proporciona la energía (química) de combustión, capaz de hacer que el auto se mueva. ¿qué tiene que ver la entropía aquí?

La energía que el coche "utilizó" para realizar trabajo y moverse, se "gastó", es decir, es energía liberada mediante un proceso químico que ya no es utilizable para que un motor produzca trabajo.






Quizás le pueda interesar

Related Posts Plugin for WordPress, Blogger...